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Introduction
Narrative feedback is very important to 
guide trainee growth in a competency-
based medical education framework.1,2 
However, organizing large amounts of 
unstructured text into a format that is 
suitable for a specific task can be labor 
intensive. Natural language processing 
(NLP) can help overcome this challenge. 
NLP is a collection of artificial intelligence 
(AI) techniques in which computer systems 
extract meaning from (ie, discriminative or 
traditional AI) or produce (ie, generative 
AI) written or spoken human language. 
NLP is increasingly used in medical 
education, including applications such 
as personalizing learning experiences,3 
identifying gender bias in trainee 
assessments,4 and enhancing program 
assessment of trainee competence.5

Our group previously published an NLP 
technique that classifies narrative comments 
on anesthesiology trainee performance 
assessments into the Accreditation Council 
for Graduate Medical Education (ACGME) 
subcompetencies to enhance programmatic 
assessment.5 We integrated this innovation 
into our residency program, which 
substantially reduces the time required 
by our Clinical Competency Committee 
to organize narrative feedback on each 
resident, guides competency-based trainee 
self-reflections, and facilitates semiannual 
faculty feedback. Although programs can 

design assessment forms to guide comments 
toward specific subcompetencies, an 
assessment that lists all 23 anesthesiology 
subcompetencies would be cumbersome 
and likely result in limited assessment 
submissions. Our program’s approach 
was to guide comments toward a limited 
number of competencies that are either 
seldom discussed or difficult for the NLP 
technique to identify (eg, Systems-Based 
Practice), and provide ample space for free-
text narratives. Although the innovation 
performed well, it used an NLP technique 
that is no longer regarded as state-of-the-
art.

The NLP algorithm used in our innovation 
was called FastText,6 which falls into the 
broader category of NLP techniques called 
“bag of words” (BoW). BoW approaches 
do not consider word order in their 
predictions; it is as if all the words for a given 
input are dumped into a “bag” and are used 
in aggregate to make a prediction. Deep 
learning NLP algorithms, including large 
language models (LLMs) such as ChatGPT,7 
are currently regarded as the state-of-the-
art approach in many NLP applications. 
Most deep learning LLMs incorporate 
information about word sequence and 
context and therefore outperform many 
BoW approaches. The aim of this study was 
to explore applications of contemporary 
deep learning LLMs in medical education. 
We hypothesized that deep learning LLMs 
can more accurately identify ACGME 

subcompetencies in trainee assessments 
than our previous BoW approach.

Methods
This study was approved by the Naval 
Medical Center Portsmouth Institutional 
Review Board in compliance with all 
applicable federal regulations governing the 
protection of human subjects. The specific 
NLP task was multiclass classification in 
which deep learning models learned to 
predict which ACGME subcompetency 
was best reflected in narrative clinical 
performance evaluations on anesthesiology 
trainees.

Data Source and Preprocessing

Techniques for curating the dataset were 
described previously.5 Briefly, narrative 
assessments on residents across the four 
US military anesthesiology training 
programs between July 1, 2019, and June 
30, 2021, were collected. Expert reviewers 
(ie, anesthesiology program directors and 
associate program directors) assigned each 
sentence with 1 of the 23 anesthesiology 
ACGME subcompetencies from Milestones 
2.0 that best described it or N for not 
useful or D for demographic (eg, “this 
is an evaluation for a day on labor and 
delivery”). Although assessments predated 
Milestones 2.0, which were implemented 
on July 1, 2021, we elected to use Milestone 
2.0 subcompetencies for model use with 
ongoing applications.
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Data from 3 programs were pooled to build 
the training dataset (N = 10 218 comments), 
and data from the fourth program were 
used as the validation dataset (N = 2255 
comments). Each comment represented a 
separate narrative by a staff anesthesiologist 
on a resident’s performance, labeled with 
the ACGME subcompetency that best 
applied. Subcompetencies represented by 
<1% of the training data were combined 
into the most similar subcompetency, 
yielding 16 possible categories (final 
categories and distribution of comments 
are presented in the authors’ prior work5). 
For example, all three Systems-Based 
Practice subcompetencies were combined 
into 1 category. 

NLP Algorithm Basics

Despite many model architectures for NLP 
classification, there is a general flow that 
algorithms follow (Figure 1). Algorithms 
work on numbers, not words. Therefore, 
NLP algorithms first convert text to 
numbers in a process called encoding 
(sometimes called “embedding” depending 
on the specific approach). The goal of 
encoding is to assign numbers to text 
inputs that capture semantic meaning; 
thus, linguistic information from written or 
spoken language is encoded into abstracted 
mathematical relationships. In original 
BoW algorithms, a given input for a model 
was always assigned the same numeric 
encoding despite the context in which 
it was used. Advanced BoW algorithms, 
such as FastText, modified input encodings 
based on a few surrounding words, which 
allowed models to account for limited 
context related to how a word was used.

Improved encoding techniques were 
the crux of many advances in LLM 
performance over the past several 
years. With the advent of embedding, a 
specialized encoding technique used in 
models such as FastText and Word2Vec,8 
natural language could be represented by 
rich vectors of continuous data, boosting 
performance on many NLP tasks. Advances 
in embedding (eg, Transformer models9) 
now allow algorithms to consider long 
word sequences and distant context 
around an input, thereby empowering NLP 
models to better understand intricacies of 

human language. With these embedding 
techniques, a given input may have different 
numeric embeddings depending on how it 
is used and thus enhance performance on 
downstream tasks. This approach is more 
akin to human conversations; a word or 
phrase could carry very different meaning 
depending on the context and flow of a 
conversation. 

Approach to NLP Model Training

In this investigation, deep learning was 
performed using the Bidirectional Encoder 
Representations from Transformers 
(BERT) family of models,10 a deep learning 
neural network architecture. BERT is an 
LLM that embeds linguistic relationships 
from text learned from training on more 
than 1 billion words from over 10 000 
books and thousands of Wikipedia pages. 

One limitation of training and deploying 
LLM systems is model size. As LLMs grow 
in complexity, they tend to perform better 
at the expense of higher computational 
requirements. This concept is important to 
consider in our application (ie, residency 
assessments) because more complex 
models increase costs and may present 
challenges related to data privacy. Because 
trainee assessments may include sensitive 
data, the ideal system would operate in a 
contained environment with limited risk of 
data spillage. Although some AI companies 
may allow users to train models with users’ 
data, we aimed to retain control over our 
models and the data used to train them. 
Further, AI models can be implemented on 
mobile devices. Typical mobile applications 
are on the order of 50 to a few hundred 
megabytes (MB), which is much smaller 
than most contemporary LLMs, which can 
be several gigabytes.

We explored performance of the original 
BERT-base model fine-tuned on our 
dataset in addition to 4 smaller-sized BERT 
models to investigate the tradeoff between 
model complexity and accuracy: BERT-
base (436 MB), BERT-medium (167 MB), 
BERT-small (116 MB), BERT-mini (45 
MB), and BERT-tiny (18 MB). A custom 
training pipeline was created in Python 3.10 

(Wilmington, DE) with the Transformers 
Python library.11 All models were trained 
using the following hyperparameters: 
learning rate = 2 × 10−5, batch size = 16, and 
3 epochs. 

Performance Metrics

The primary performance metric was F1. F1 
is a measure of accuracy that is calculated 
from recall (ie, sensitivity) and precision 
(ie, positive predictive value). We calculated 
F1 with 95% confidence intervals (CIs) on 
the validation dataset. F1 ranges from 0 to 
1 (1 represents perfect performance). There 
is no consistent interpretation of what F1 
score constitutes satisfactory performance. 
Interpretation of F1 depends on the context 
of its application. For example, some systems 
are designed to optimize recall, whereas 
others preferentially seek high precision. 
The utility of F1 in the present investigation 
is to provide a metric commonly used in 
classification performance assessment 
that is consistent across all comparisons. 
Further, we sought a performance 
metric that could represent global model 
performance. Because the data are class 
imbalanced (ie, unequal distribution of 
subcompetencies), our F1 implementation 
assessed performance of the models while 
treating all classes as equally important so 
that model performance on rare category 
labels were not overshadowed by the highly 
represented categories. 

Additionally, we calculated area under 
the receiver operating characteristic 
curve (AUC) values with 95% CIs for 
each ACGME category to allow direct 
comparison of model performance to 
our original BoW approach. CIs were 
calculated using 250 bootstrap samples. 
AUC in this investigation represents 
the probability that the model scores a 
randomly selected narrative that belongs to 
a particular subcompetency as more likely 
to belong to that subcompetency than a 
randomly selected narrative belonging to a 
different subcompetency. AUC is generally 
interpreted as poor (0.50 to 0.59), fair (0.60 
to 0.69), good (0.70 to 0.79), excellent (0.80 
to 0.89), and outstanding (0.90 and above).

Sensitivity Analysis

Transformer models learn how to represent 
human language from the text used to train 
them. Therefore, an LLM may be skilled at 
interpreting 1 language but not another. 
Similarly, an LLM trained on a broad 
collection of topics may not perform well 
in a specific domain, such as medicine. 
To explore whether performance on our 
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medical education application could be 
boosted by using an LLM more familiar 
with medical language, we also fine-tuned 
a model called SciBERT.12 SciBERT has the 
same architecture as BERT-base but was 
trained using more than 1 million full-text 
biomedical publications, thereby learning 
how to represent English language in the 
scientific domain.

Results
Model Performance

There were no statistically significant 
differences in F1 between the model used 
in our prior investigation (FastText) and 
BERT-base, BERT-medium, BERT-small, 
or BERT-mini (Figure 2). BERT-tiny 
performed worse. On sensitivity analysis, 
SciBERT performance was not significantly 
better than FastText or BERT-base.

BERT-mini was the smallest model with 
equivalent performance to FastText 
based on F1 (Figure 2). BERT-mini 
was 94% smaller (45 MB versus 784 
MB). Considering AUC per ACGME 
category for BERT-mini versus FastText, 
performance was equivalent on all of the 16 
categories except Patient Care 7 (Situational 
Awareness and Crisis Management) and 
Systems-Based Practice (Table 1; AUC 
per ACGME category for FastText were 
published in the authors’ prior work5).

BERT-mini performance on each category 
ranged from poor (the worst was Systems-
Based Practice, AUC of 0.5) to outstanding 
(Patient Care 5, Airway Management, 
AUC of 0.9). Nine of the 16 categories 
demonstrated performance of good or 
better (AUC of at least 0.70). Four of the 16 
categories demonstrated fair performance, 
and 3 demonstrated poor performance.

Discussion
In this investigation, deep learning LLMs 
learned how to interpret anesthesiology 
trainee narrative evaluations. The LLMs 
did not perform more accurately than the 
authors’ prior work,5 which used an older 
NLP technique that has limited ability 
to account for word order or context 
(FastText). However, comparable accuracy 
was achieved using an LLM that was 94% 
smaller than the model used in the prior 
work. This improvement in computational 

efficiency advances our understanding 
of the optimal approach to integrating 
NLP technologies into medical education 
applications.

BERT-mini demonstrated good or 
excellent performance, identifying most 
ACGME competencies discussed in trainee 
assessments, similar to FastText. Areas of 
poor or fair performance were also similar, 
such as Systems-Based Practice. We were 
surprised that the larger LLMs used in this 
investigation did not outperform FastText. 
We posited in our prior publication that one 
limitation may be related to poor inter-rater 
agreement for some competencies,5 which 
limits an LLM’s ability to learn consistent 
patterns, regardless of the LLM size or 
complexity. Another reason could be that 
most narrative comments were only 1 to 2 
sentences, so the transformer architectures 
were unable to leverage broad linguistic 
contexts. Another limitation was that we 
used pretrained models. Intermediate 
training, or additional pretraining, can 
improve domain-specific performance. 
For example, BioBERT took the pretrained 
BERT model and modified its weights 
using a large collection of biomedical 
texts, which enhanced performance on 
several biomedical-specific tasks.13 In 
our sensitivity analysis, SciBERT did not 
improve performance, but it is possible 
that intermediate training on BERT using 
a large corpus of feedback language or 
anesthesiology-specific language could 
improve performance for our task.

Although we explored performance 
metrics of the LLMs, we did not measure 
utility such as quantifying value added. Our 
program uses the FastText implementation 
described in this investigation and has 
realized substantive value in several areas, 
including reduced time and improved 
consistency by the Clinical Competency 
Committee while mapping assessment 
comments to competencies and facilitating 
ACGME requirements related to feedback 
and evaluation. We use the model to 
guide a competency-based trainee self-
reflection exercise, and we provide faculty 
with semiannual feedback on the ACGME 
competencies discussed in the narratives 
that they write. We have found particular 
value in the system’s ability to identify 
comments as “not useful” and provide 
feedback on which competencies their 

comments address in comparison to 
the average core faculty member during 
our targeted faculty feedback to help 
them better align their comments with 
ACGME language. Our findings in this 
investigation suggest that we can realize 
the same value with a smaller model, which 
potentially could be integrated into mobile 
applications. 

Transformer-based LLMs are extremely 
powerful NLP tools and currently 
demonstrate state-of-the-art performance 
on many tasks. However, there is a paucity 
of evidence on technological barriers to 
deploying LLMs in medical education 
applications. In the authors’ experience, 
computational requirements for hosting 
and running NLP models can be quite costly 
and technically challenging. For example, 
many LLMs require expensive graphics 
processing units to operate. These graphics 
processing units may only be available to 
institutions through subscription services. 
Therefore, using an LLM for medical 
education purposes could require moving 
data to the model for fine-tuning it to 
perform a specific task and/or using it to 
make predictions or generate outputs. Both 
of those situations raise concerns for data 
privacy. Smaller LLMs may mitigate these 
concerns because they may be able to 
operate within an institution’s computing 
framework or even on a mobile device, 
assuming that they are still performant. 
Aside from privacy, such implementations 
may be more accessible by applications for 
faster and simpler use. 

Deploying LLMs on end-user devices is 
an active area of research in the broader 
AI community. For example, Google 
(Mountain View, CA) released a compact 
version of their powerful transformer LLMs 
called Gemini Nano in late 2023, which 
was optimized for use on mobile android 
devices.14 Gemini Nano is a distilled 
version of their larger Gemini model, 
similar to the smaller versions of BERT 
used in the present work. Recent research 
from Apple (Cupertino, CA) highlights 
advances in LLM memory usage on iOS 
to accommodate LLM computational 
requirements and speed LLM performance 
on their devices.15 Our work complements 
these efforts in the AI community by 
providing evidence on methods to improve 
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NLP efficiency in the medical education 
domain. 

Conclusion
NLP has the potential to transform trainee 
feedback through several important 
mechanisms. We showed how transformer-
based LLMs can automatically organize 
unstructured narrative assessments 
for program and/or trainee review. We 
showed that improvements in NLP model 
architecture can dramatically reduce 
computational resources without sacrificing 
performance. Our work is important for 
advancing the integration of LLMs into 
graduate medical education workflows and 
is aligned with advances in the broader AI 
community on how best to deploy models 
that are performant yet small enough for 
hosting on end-user devices or locally at an 
institution, thereby potentially improving 
speed and mitigating concerns related to 
data privacy.
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Abstract

Background: Natural language processing is a collection of techniques designed to 
empower computer systems to comprehend and/or produce human language. The 
purpose of this investigation was to train several large language models (LLMs) to 
explore the tradeoff between model complexity and performance while classifying 
narrative feedback on trainees into the Accreditation Council for Graduate Medical 
Education subcompetencies. We hypothesized that classification accuracy would 
increase with model complexity.

Methods: The authors fine-tuned several transformer-based LLMs (Bidirectional 
Encoder Representations from Transformers [BERT]-base, BERT-medium, BERT-
small, BERT-mini, BERT-tiny, and SciBERT) to predict Accreditation Council 
for Graduate Medical Education subcompetencies on a curated dataset of 10 218 
feedback comments. Performance was compared with the authors’ previous work, 
which trained a FastText model on the same dataset. Performance metrics included 
F1 score for global model performance and area under the receiver operating 
characteristic curve for each competency.

Results: No models were superior to FastText. Only BERT-tiny performed worse 
than FastText. The smallest model with comparable performance to FastText, BERT-
mini, was 94% smaller. Area under the receiver operating characteristic curve for 
each competency was similar on BERT-mini and FastText with the exceptions of 
Patient Care 7 (Situational Awareness and Crisis Management) and Systems-Based 
Practice. 

Discussion: Transformer-based LLMs were fine-tuned to understand anesthesiology 
graduate medical education language. Complex LLMs did not outperform FastText. 
However, equivalent performance was achieved with a model that was 94% smaller, 
which may allow model deployment on personal devices to enhance speed and data 
privacy. This work advances our understanding of best practices when integrating 
LLMs into graduate medical education.

Keywords: Natural language processing, artificial intelligence, anesthesiology, 
graduate medical education, large language model
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Figure 1. Example of text classification using bag of words (BoW) and transformer large language models (LLMs). In this example, both 
inputs have identical words, but word order and context convey much different meanings. First, raw input text is tokenized, or split, into 
chunks of characters/words. Then, a BoW or transformer LLM embeds, or encodes, the tokens into numeric representations. BoW does 
not account for word order, unlike transformers. Therefore, BoW creates identical embedding vectors for both inputs (Vec 1, the vector 
representation for input (1) is identical to Vec 2, the vector representation for input (2)) because each has the same set of words. However, 
the transformer creates distinct vectors for each input, which capture different semantics. In this example, the final layer on the algorithm is 
classification. BoW produces the same prediction for both inputs, whereas the transformer produces distinct predictions. The final layer on 
the transformer LLM could be replaced by a different fine-tuned layer, such as one for question answering. With a different fine-tuned layer, 
the tokenization and embedding process would be the same, but the end-task would solve a different problem.
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Figure 2. Model performance and size. Performance is quantified by F1 score with 95% confidence intervals (CIs). Model size is quantified 
in megabytes. All Bidirectional Encoder Representations from Transformers (BERT) models are substantially smaller than FastText. With the 
exception of BERT-tiny, F1 scores for all BERT models are equivalent to FastText (ie, the 95% CIs overlap for all models except BERT-tiny). 
The BERT-tiny F1 score is significantly lower.
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Table 1. Model Performance Measured by Area Under the Receiver Operating Characteristic Curve a

  SciBERT BERT-base BERT-medium BERT-small BERT-mini BERT-tiny
Model Size 442 MG 436 MB 167 MB 116 MB 45 MB 18 MB
AUC            
PC1 0.82 (0.78, 0.87) 0.78 (0.72, 0.83) 0.77 (0.72, 0.82) 0.76 (0.71, 0.81) 0.77 (0.72, 0.82) 0.62 (0.58, 0.67)
PC2 0.78 (0.75, 0.82) 0.75 (0.71, 0.79) 0.73 (0.69, 0.77) 0.74 (0.71, 0.78) 0.72 (0.69, 0.76) 0.64 (0.61, 0.68)
PC3 0.79 (0.73, 0.87) 0.73 (0.66, 0.80) 0.73 (0.66, 0.80) 0.71 (0.66, 0.77) 0.67 (0.62, 0.73) 0.51 (0.50, 0.53)
PC4 0.67 (0.63, 0.70) 0.68 (0.64, 0.72) 0.67 (0.64, 0.71) 0.69 (0.66, 0.73) 0.70 (0.67, 0.74) 0.57 (0.54, 0.59)
PC5 0.90 (0.86, 0.94) 0.92 (0.88, 0.96) 0.93 (0.90, 0.96) 0.93 (0.89, 0.96) 0.90 (0.87, 0.94) 0.89 (0.85, 0.93)
PC7 0.65 (0.61, 0.69) 0.64 (0.59, 0.68) 0.59 (0.56, 0.64) 0.58 (0.54, 0.62) 0.52 (0.50, 0.54) 0.53 (0.50, 0.55)
PC8 0.67 (0.60, 0.74) 0.61 (0.55, 0.69) 0.61 (0.56, 0.69) 0.76 (0.69, 0.85) 0.63 (0.58, 0.71) 0.50 (0.50, 0.50)
PC10 0.89 (0.85, 0.93) 0.91 (0.87, 0.94) 0.89 (0.84, 0.93) 0.88 (0.83, 0.92) 0.86 (0.82, 0.91) 0.81 (0.76, 0.87)
MK1 0.89 (0.86, 0.92) 0.91 (0.88, 0.93) 0.88 (0.85, 0.91) 0.88 (0.85, 0.91) 0.87 (0.84, 0.90) 0.86 (0.83, 0.89)
MK2 0.59 (0.55, 0.64) 0.60 (0.56, 0.65) 0.59 (0.55, 0.64) 0.59 (0.54, 0.63) 0.54 (0.51, 0.58) 0.51 (0.50, 0.52)
P 0.65 (0.63, 0.68) 0.64 (0.62, 0.67) 0.63 (0.61, 0.65) 0.65 (0.62, 0.68) 0.64 (0.61, 0.67) 0.61 (0.58, 0.63)
ICS 0.82 (0.78, 0.86) 0.84 (0.79, 0.88) 0.85 (0.82, 0.89) 0.82 (0.77, 0.86) 0.81 (0.77, 0.85) 0.73 (0.69, 0.78)
PBLI 0.70 (0.67, 0.74) 0.75 (0.71, 0.79) 0.70 (0.67, 0.75) 0.69 (0.66, 0.73) 0.66 (0.63, 0.70) 0.51 (0.50, 0.53)
SBP 0.57 (0.53, 0.61) 0.52 (0.50, 0.54) 0.50 (0.50, 0.50) 0.50 (0.50, 0.52) 0.50 (0.50, 0.50) 0.50 (0.50, 0.50)
D 0.85 (0.82, 0.88) 0.86 (0.83, 0.89) 0.86 (0.83, 0.88) 0.86 (0.83, 0.89) 0.85 (0.82, 0.88) 0.84 (0.81, 0.87)
N 0.86 (0.85, 0.88) 0.87 (0.85, 0.89) 0.87 (0.85, 0.89) 0.87 (0.85, 0.89) 0.87 (0.85, 0.89) 0.85 (0.84, 0.87)

Abbreviations: AUC, area under the receiver operating characteristic curve; BERT, Bidirectional Encoder Representations from 
Transformers; D, demographic; ICS, interpersonal and communication skills; MB, megabytes; MK, medical knowledge; P, professionalism; 
PBLI, practice-based learning and improvement; PC, patient care; SBP, systems-based practice; N, not useful.
a Data are presented as AUC (95% confidence interval).


